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Damped oscillators are any system whose time evolution can be described
by an equation of the form

m
d2x

dt2
+ b

dx

dt
+ kx = F (t) (1)

where x is the system’s quantity of interest, t is time, F is an arbitrary forcing
function, and m, b, and k are constants of the system.

There are two special cases I would like to look at in this post. The first
is when there is no forcing function, F (t) = 0. The second is when the forcing
function takes the form F (t) = F0 cos(ωt). These two cases make up the vast
majority of use cases in practice.

1 Free Oscillation

If F (t) = 0 we then have what is known as free oscillations. This results in the
homogeneous equation

m
d2x

dt2
+ b

dx

dt
+ kx = 0. (2)

We can begin with the classic trial solution x = ert. From here we have

x = ert,

dx

dt
= rert, and

d2x

dt2
= r2ert

Inserting these into eq. 2 yields

mr2ert + brert + kert = 0

and from here we can divide through by ert to arrive at the characteristic equa-
tion (also sometimes called the auxiliary equation):

mr2 + br + k = 0 (3)
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which has two solutions:

r1,2 =
−b±

√
b2 − 4mk

2m
. (4)

Of critical interest is the discriminant b2 − 4mk. This quantity is important
enough to be given its own variable, ∆ = b2 − 4mk. The value of ∆ determines
the large-scale behavior of the system, which can be broken into three regimes:
∆ > 0, ∆ = 0, and∆ < 0.

1.1 Overdamped Regime

∆ > 0 is called the the overdamped regime. For a positive discriminant, the
roots of the characteristic equation are real valued and distinct. This gives us
two linearly independent solution functions to the ODE. Any linear combination
of these two functions will thus be a solution to the ODE. The most general
solution to the homogeneous equation is then simply1

x(t) = A1e
r1t +A2e

r2t (5)

where A1 and A2 are constants determined by the initial conditions. Let’s pick a
specific set of initial conditions and see how the system behaves in each regime.
For simplicity’s sake let’s pick x(0) = 2, ẋ(0) = 0. We can now determine
A1 andA2 as follows:

x(0) = A1 +A2 = 2 → A2 = 2−A1

ẋ(0) = A1r1 +A2r2 = 0

We can substitute the first equation into the second to get

A1r1 +A2r2 = A1r1 + (2−A1)r2 = A1(r1 − r2) + 2r2 = 0 → A1 = − 2r2
r1 − r2

And now substituting this back into the first equation,

A2 = 2− −2r2
r1 − r2

=
2r1 − 2r2 + 2r2

r1 − r2
=

2r1
r1 − r2

.

So,

x(t) =

(
2

r1 − r2

)
(r1e

r2t − r2e
r1t). (6)

Next we need to pick values of m, b, and k so that ∆ is positive. Let’s choose
m = 2, b = 40, and k = 50. Then ∆ = 1200 > 0. We can now plot x(t) for
several seconds to see its behavior:

1This is because we are solving a second order linear ODE. A linear ODE’s general solution
requires the same number of linearly independent functions as its order. The reason for this
is beyond the scope of the current discussion. Any introductory ODE text will cover this.
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Figure 1: Example of an overdamped system. The system decays back to equi-
librium without oscillations. The damping coefficient is so strong it prevent the
system from ever overshooting equilibrium.

1.2 Critically Damped Regime

The critically damped regime occurs when ∆ = 0. If this is the case, then
r1 = r2 = −b/2a. Let r = −b/2a. Now we cannot use the same solution as for
the overdamped regime because we would have

x(t) = A1e
r1t +A2e

r2t = A1e
rt +A2e

rt = (A1 +A2)e
rt

which shows that here x(t) is a single function. To ensure our solution
covers all possible cases, we need x(t) to be a linear combination of two linearly
independent functions. We must hunt around for another trial solution. The

3



next simplest function to try is test. Then we have

x(t) = test

ẋ(t) = est + stest and

ẍ(t) = sest + sest + s2test = 2sest + s2test.

We can now substitute these equations back in to equation (2) to get

m(2sest + s2test) + b(est + stest) + ktest = 0

→ m(2s+ s2t) + b(1 + st) + kt = 0

→ (2ms+ b) + (ms2 + bs+ k)t = 0

The trial function must be valid for all t ≥ 0. Since t is essentially always
non-zero (except at one point), this means both the terms in parenthesis must
separately vanish. There is no guarantee however that this will or even can
occur. We thus have the following two requirements:

2ms+ b = 0

ms2 + bs+ k = 0

The second equation we recognize as the characteristic equation which requires
s = (−b±

√
b2 − 4mk)/2m). And for critically damping the discriminant is zero

so this becomes
s = −b/2m.

From the first equation we have

s = −b/2m

so indeed, our trial function is a solution with s = r. Notice this function is a
solution only for the critically damped case. For any other case, the discriminant
is non-zero and so we would have a contradiction on the value of s.

Putting this all together we have as general solution for critical damping

x(t) = B1e
rt +B2te

rt = (B1 +B2t)e
rt (7)

Let’s determine the solution for the particular initial conditions x(0) = 2 and
ẋ(0) = 0. Then using the fact that ẋ(t) = B2e

rt + r(B1 +B2t)e
rt we have

x(0) = B1 → B1 = 2

ẋ(0) = B2 + rB1 → B2 = −rB1 = −2r

→ x(t) = 2r(1− t)ert

We can now take the example system from the section on overdamped oscillators
and dial the damping coefficient down to b = 20 so that combined with m = 2
and k = 50 we have ∆ = 400− 400 = 0 as desired. Plotting this out for several
seconds we get the following curve:
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Figure 2: Example of a critically damped system response. Compared to figure
??, this curve decays much faster back to equilibrium.

1.3 Underdamped Regime

If ∆ < 0 we are in the underdamped regime. Now the roots of the characteristic
equation are not real but a conjugate pair of complex numbers viz.

r1,2 =
−b

2m
± i

√
4mk − b2

2m

We again have two linearly independent solutions to eq. (2) so we can immedi-
ately arrive at the general solution:

x(t) = e
−b
2m t

(
C1e

i
√

−∆
2m t + C2e

−i
√

−∆
2m t

)
There is still quite a bit of clean-up to do before we can reach the more commonly
used form of the solution. First let’s define some new variables to tidy up
notation. Let τ = 2m/b and ω =

√
−∆/2m. Now we may write x as

x(t) = e−t/τ (C1e
iωt + C2e

−iωt)
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Keep in mind here that eiωt can in general be a complex number. But x(t) must
always be a real number! This means C1 and C2 must also be complex in just
the right way to ensure the imaginary components of e±iωt always cancel out
for all choices of t. This seems like a rather daunting problem to work out, but
introducing a few new variables let’s us sweep everything under the rug.

First, let’s notice that since x(t) is a real number, it is equal to its complex
conjugate. Therefore we have

x(t) = x(t)∗ → C1e
iωt + C2e

−iωt = C∗
1e

−iωt + C∗
2e

iωt

Now eiωt and e−iωt are linearly independently functions, so the only way
this relation is true is if the coefficients in front of them are the same for both
sides of the equation. This implies that

C1 = C∗
2 and

C2 = C∗
1

The second relation is simply the complex conjugate of the first and so provides
no new information. Defining f(t) = eiωt, We can then write

C1e
iωt + C2e

−iωt = C1f(t) + C∗
1f(t)

∗ = C1f(t) + (C1f(t))
∗

And for all choices of t this boils down to some complex number plus its con-
jugate, which is always real2. It might seem that perhaps we’ve made an error
because a second order ODE requires two constants of integration and now we
only have 1, C1. But despair not! For C1 is complex, so it may be written as
C1 = a+ ib which contains two distinct constants.

Returning to x(t), now we can make use of Euler’s formula and define some
new constants D1 = C1+C2 and D2 = i(C1−C2). (Notice both these constants
will be real numbers since z + z∗ = 2Re{z} and z − z∗ = 2iIm{z}.) So now we
have

x(t) = e−t/τ (D1 cos(ωt) +D2 sin(ωt) ) .

This is looking much cleaner, but there is one final redefinition of constants we
can make to clean this expression up even further.

2This can easily be seen by considering an arbitrary complex number z = a + ib. Then
z∗ = a− ib and so z + z∗ = 2a which is real.
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Figure 3: D1 and D2 can be used to form the legs of a triangle. This lets us
turn our integrating constants into a Radius-angle pair.

Consulting figure 3, We can let D1 and D2 form the legs of a right triangle.
Then we can define the new variables R and δ as R =

√
D2

1 +D2
2 and δ =

arctan(D2/D1). More useful to us are the inverse relations D1 = R cos δ and
D2 = R sin δ which we can substitute into x(t) to arrive at

x(t) = e−t/τ (R cos δ cosωt+R sin δ sinωt).

Finally we can make use of the trig. identity cos(α−β) = cosα cosβ+sinα sinβ
to arrive at the desired result:

x(t) = e−t/τ (R cos(ωt− δ) ). (8)

Let’s see how how our test system behaves if we use the same initial conditions
and dial our damping down to b = 7 (again with m = 2 and k = 50). Now we
have

ẋ(t) = −Rω sin(ωt− δ)

so,

x(0) = 2 = R cos δ

ẋ(0) = 0 = −ωR sin(−δ) → sin(δ) = 0 → δ = 0

→ R = 2

So our test system’s motion is governed by

x(t) = 2 cos(ωt).

Plotting this out we get the following:
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Figure 4: In the underdamped regime, the damping coefficient is no longer
strong enough to stop the system from over shooting. Now the system oscillates
about its equilibrium before settling down.

1.4 Special case: no damping

If b = 0 there is no damped motion, and so the characteristic equation becomes
mr2 + k = 0. In this case r1 and r2 are not just complex but purely imaginary.
Namely,

r1,2 = ±i

√
k

m

so we define ω0 =
√

k/m. From here the solution is identitical to the case for
underdamped systems. The only difference is that now there is no e−t/τ in front
of the final solution so the oscillations will not decay. Instead, we have for our
general solution

x(t) = R cos(ωt− δ). (9)
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ω0 is often called the natural frequency because it is the frequency a system will
oscillate at if not damped and left to its own devices (i.e. not driven). This
notation is used even in damped systems as we will see in the next subsection.

1.5 The damping ratio

The turning point from oscillatory to non-oscillatory behavior in the system
occurs at ∆ = 0. Put another way, the turning point is when b2 = 4mk. Thus it
is the balance between b2 and 4mk that determines the large scale behavior of
the system. Since the sign of ∆ depends on the relative size of the two quantities
b2 and 4mk, we are really interested in their ratio. Instead of looking at the
discriminant we could define a new unitless quantity b2/4mk. Critical damping
occurs when this ratio is 1, while overdamped behavior occurs when the ratio is
greater than 1 because this implies b2 is larger than 4mk. Likewise, when the
ratio is below 1 the system is underdamped. In practice however, it is not this
ratio, but rather its square root ζ = b/2

√
mk, that is used. This is called the

damping ratio.
The great utility of ζ is that we can rewrite eq.’s (1) and (2) entirely in terms

of ζ and ω0 (and of course x and its derivatives). We begin by substituting
b = 2ζ

√
mk then dividing through by k.

m

k

d2x

dt2
+

2ζ
√
mk

k

dx

dt
+ x =

1

k
F (t)

Next we simplify and substitute in ω0 where possible, noting that 1/ω2
0 = k/m

1

ω2
0

d2x

dt2
+

2ζ
√
mk

m

dx

dt
+ kx =

1

k
F (t)

1

ω2
0

d2x

dt2
+ 2ζ

√
m

k

dx

dt
+ x =

1

k
F (t)

Recognizing that since k is constant we can absorb it into the forcing function,
we arrive at the alternate form of expressing the system as

1

ω2
0

d2x

dt2
+

2ζ

ω0

dx

dt
+ x = F(t) (10)

where F(t) = F (t)/k. For undriven, underdamped systems, we can express the

frequency the system will oscillate at, ω =
√
4mk−b2

2m , in terms of ζ and ω0:

ω =

√
4mk − b2

2m

=
(2
√
mk)

√
1− b2/4mk

2m

=

√
k

m

√
1− ζ2

ω = ω0

√
1− ζ2
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Let’s see how the system behaves for each distinct region of ζ:

Figure 5: The four distinct behaviors of the system for varying ζ

2 Driven Damped Oscillator

Now that we fully understand the homogeneous equation to eq. (1), it’s time
to solving eq. (1) for the case of F (t) = F0 cos(ωdt). Explicity, we aim to solve
the equation

m
d2x

dt2
+ b

dx

dt
+ kx = F0cos(ωdt). (11)

As it turns out though, thanks to Euler’s formula, it’s easier to solve this other,
similar equation instead:

m
d2x

dt2
+ b

dx

dt
+ kx = F0e

iωdt (12)
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If we take just the real part of both sides of this equation, we recover eq. (11)
so a solution to eq. (12) is just as useful to us.

We solve this equation in nearly the same manner as before. We start with
the trial solution x(t) = Ceiωdt with C a complex constant. In fact, it’s helpful
to rewrite this constant in polar form as Reiϕ then we have

x(t) = Rei(ωdt+ϕ)

ẋ(t) = iRωde
i(ωdt+ϕ)

ẍ(t) = −Rω2
de

i(ωdt+ϕ).

Substitution back into eq. (12) gives us

−mω2
dRei(ωdt+ϕ) + ibRωde

i(ωdt+ϕ) + kRei(ωdt+ϕ) = F0e
iωdt

and dividing through by ei(ωdt+ϕ) yields

−mω2
dR+ ibRωd + kR = F0e

−iϕ

R(−mω2
d + ibωd + k) = F0e

−iϕ

R =
F0e

−iϕ

k −mω2
d + ibωd

But we know R must be a real number for this to be a valid solution. Is this
possible or have we arrived at a contradiction? The fact that we are free to
choose ϕ as necessary saves us from a contradiction. We need only to rewrite
the denominator in polar form and then we can choose ϕ to be equal to the
denominator’s argument. A picture will help to explain things here.

Figure 6: Visualizing the denominator in the complex plane.
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From figure 6 we can see that the denominator can be converted to polar form
as Heiθ where

H =
√
(k −mω2

d)
2 + (bωd)2 =

√
m2(ω2

0 − ω2
d)

2 + (bωd)2

θ = arctan

(
bωd

k −mω2
d)

)
= arctan

(
bωd

m(ω2
0 − ω2

d)

)
and we have used the fact that k/m = ω2

0 to factor out m where appropriate.
Then we have

R =
F0e

−iϕ

Heiθ
=

F0

H
ei(θ−ϕ)

and since R must be real, then it must be that ϕ = θ. This gives us

ϕ = θ = arctan

(
bωd

m(ω2
0 − ω2

d)

)
R =

F0

H
=

F0√
m2(ω2

0 − ω2
d)

2 + (bωd)2

→ x(t) = Rei(ωdt+ϕ) =
F0e

i(ωdt+θ)√
(k −mω2

d)
2 + (bωd)2

.

Then to get the solution to our original problem, eq. (11), we simply take the
real part of this solution to arrive at

x(t) =
F0√

m2(ω2
0 − ω2

d)
2 + (bωd)2

cos(ωdt+ θ) (13)

where we have used the fact that ω2
0 = k/m to factor out the m from the first

term in the denominator.
What’s worth noting in this solution is that the amplitude will change in

size depending on the drive frequency. The phase also depends on the drive
frequency. In general, the way the frequency and phase of a system depends on
the driving force’s frequency is called the ”frequency response” of the system.
Plotting both the amplitude and phase as a function of the driving frequency
allows for a nice way to visualize the frequency response and is called a Bode
plot. The bode plot for the underdamped system studied in section 1.3 is shown
in figure 7.

2.1 Resonance

Let’s return to the amplitude of x(t) in eq. (13). The maximum will occur
when the denominator is a minimum. We can find this minimum by taking the
derivative of the denominator with respect to ωd and setting it equal to zero.
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Figure 7: Bode plot for the system with m = 2, b = 7, k = 50.

In practice though, it’s easier to take the derivative of what’s inside the square
root only3:

d

dωd

[
(m2(ω2

0 − ωd)
2 + b2ω2

d)
]
= (−2ωd)m

2 · 2(ω2
0 − ω2

d) + 2b2ωd = 0

= 2ωd(b
2 − 2m2(ω2

0 − ω2
d)).

There are two solutions, one of which is ωd = 0 which is nonphysical and can
be dispensed with leaving us with the resonance frequency:

ωd,r =

√
ω2
0 −

b2

2m2
= ω0

√
1− 2ζ2 (14)

3There are several ways to see why this is a valid thing to do. One is to consider the chain
rule. Beginning with

√
u, the derivative will give us (u)−1/2u′. Since we are setting this equal

to zero we can multiply through by u1/2 leaving us with just u′ which is the derivative of what’s
inside the square root. Another way is to recognize that the square root is a monotonically
increasing function, so the minimum of what’s inside the square root will be the square root’s
minimum as well.
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Returning to figure 7, we can see this resonance frequency manifests itself as
the bump in the amplitude curve around 4.5 Hz. Notice the resonance fre-
quency is very similar in form to the ringning frequency of an undriven system
(ω0

√
1− ζ2). What’s curious to notice though, is that while there always exists

a ringing frequency for any underdamped system when undriven, there are cer-
tain underdamped systems that when driven have no resonance frequency. For
it is apparent from eq. (14) that if ζ >

√
1/2 then there will be no resonance

in the system. For instance, choosing a system with ζ = 0.8, we can see from
figure 8 that there is no bump in the bode amplitude plot at any frequency.

Figure 8: Bode plot for the system with ζ = 0.8, m = 2, k = 50.
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Let’s see how a system’s resonance behaves as we vary the damping coeffi-
cient:

Figure 9: Resonance as a function of frequency for m = 2, k = 50, ζ varied.

We can see that resonance becomes more extreme as the damping of the system
is lowered. We can see also that the peaks become thinner as the resonance’s
strength increases. Just like we have the damping ratio to characterize whether
a system will exhibit oscillatory behavior or not, it would be nice to have a
quantity that gives us some information about the quality of our resonator, i.e.
how sharply peaked it is. The previous plot may make it seem that the damping
ratio tells us this information, but that is not so. Figure 10 below shows the
comparison of 3 different systems all with the same damping ratio of ζ = .0625.
We can plainly see there is still something different between these resonators
despite their having the same damping ratio. Specifically, we can see a trend
that as the resonance frequency decreases, the peak sharpens. This leads us
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to what is called the resonator’s quality factor or Q-factor, which is a ratio of
the amplitude response’s resonance frequency to it’s width. And by width, I
specifically mean the ”full width at half maximum” (FWHM in the literature).
The full width at half maximum is the length of the frequency range over which
the amplitude response is at least half the maximum value or more (see fig 11).

Q =
ωd,r

FWHM
(15)
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Figure 10: Comparison of resonance for various system all with ζ = 0.0625.
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Figure 11: Visualization of the FWHM (orange line) of a resonator.
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